QCIS是用于量子计算物理系统远程调控的指令集,这意味着云平台将支持用户远程调用其开放接口,在真实量子计算原型机上进行“云端”量子编程实验。
QCIS指令概述
QCIS(Quantum Control Instruction Set)是一套对超导量子计算机硬件系统进行控制的指 令集,旨在将硬件控制用指令进行抽象标准化。它不同于量子计算机指令集 QASM(Quantum Assembly Language),两者的区别在前者面向的是原始的物理系统而后者是对量子门的抽象 表达。QCIS和物理系统有比较紧密的的耦合,原则上QCIS和量子处理,控制系统是绑定的。 如果物理系统发生大的变化,比如qubit从Transmon Qubit换成Flux Qubit或Phase Qubit, 耦 合器从Gmon换成腔耦合等,QCIS也要有全新的版本才能适配。
QCIS指令格式
QCIS指令采用《OpCode》《Target》的格式,由指令字符,目标比特组成。目前云平 台12量子计算机支持的指令包含14个单比特门和一个双比特门,分别为X, Y, Z, S, SD, H,T,T D, X2P, X2M, Y 2P, Y 2M 和CZ。具体定义我们会在下一单元给出。目标比特由字母Q加 相应索引(index)组成,如云平台12比特量子计算机上有12个量子比特,相应标识为Q1, Q2, . . .Q12. 每一个指令占一行。不同指令不可以叠加在同一行, 如X Y Q1指令是不合语法的。同样 同一门作用在不同比特上也应按照不同操作写在不同行。如X Q1 Q2 是不合语法的。但是, 有一个特例请读者注意,测量门可以写在同一行,如实验最终对第1, 4, 5比特做测量,可以表示为M Q1 Q4 Q5。也可以写在不同行做不同操作处理,如 M Q1 \n M Q4 \n M Q5。
QCIS指令不区分大小写。
QCIS基础指令
云平台所包含的原生门包含如下操作,X2P, X2M, Y2P, Y2M, RZ, XYARB, I, B,M. 除此之外,云平台也配备了复合门操作:X, Y, S, SD, T, TD, Z, H, RX,RY, RXY.
下表描述了云平台所包含的原生门的定义及使用规则
表 1: QCIS原生门使用规则
指令 |
说 明 |
QCIS指令 |
验证规则 |
X2P |
X2P=Rx(π/2)=e−iπ/4σx21[1−i−i1] |
X2P Q1 |
无 |
X2M |
X2M=Rx(−π/2)=eiπ/4σx=2
1[1ii1] |
X2M Q1 |
无 |
Y2P |
Y2P=Ry(π/2)=e−iπ/4σy=2
1[11−11] |
Y2P Q1 |
无 |
Y2M |
Y2M=Ry(−π/2)=eiπ/4σy=2
1[1−111] |
Y2M Q1 |
无 |
CZ |
CZ=⎣⎢⎢⎡100001000010000−1⎦⎥⎥⎤ |
CZ Q1 Q2 |
Q1,Q2 需满足硬件连接条件 |
RZ |
RZ(θ)=e−iθ/2σz=[e−iθ/200eiθ/2] |
RZ Q1 θ |
无 |
XYARB |
XYARB(ϕ,θ)=e−iθ/2n^⋅σ^=[cosθ/2−ieiϕsinθ/2−ie−iϕsinθ/2cosθ/2] n^=(cosϕ,sinϕ,0) |
XYARB Q1 ϕ θ |
−π/2≤θ≤π/2 |
I |
在一段时间t(ns)内无操作 |
I Q1 t |
t为整数,单位为0.5ns 即当t=1时,时间为0.5ns |
B |
对齐量子操作 |
B Q1 Q2 |
无 |
注:
-
RZ 指令中的θ 不做−π<θ≤π的约束
-
RXY 指令中的ϕ 不做−π<θ≤π的约束
-
目前暂不支持直接调用XYARB指令,建议使用RXY指令代替(详见RXY编译规则)。
本表描述了复合门的编译规则。
表 2: QCIS 指令编译规则
指令 |
说 明 |
QCIS指令 |
编译规则 |
X |
X=[0110] |
X Q1 |
X2P Q1 X2P Q1 |
Y |
Y=[0i−i0] |
Y Q1 |
Y2P Q1 X2P Q1 |
S |
S=eiπ/4Rz(π/2)=[100i] |
S Q1 |
RZ Q1 π/2 |
SD |
SD=e−iπ/4Rz(−π/2)=[100−i] |
SD Q1 |
RZ Q1 -π/2 |
T |
T=eiπ/8Rz(π/4)=[100eiπ/4] |
T Q1 |
RZ Q1 π/4 |
TD |
TD=e−iπ/8Rz(−π/4)=[100e−iπ/4] |
T Q1 |
RZ Q1 -π/4 |
Z |
Z=iRz(pi)=[100−1] |
Z Q1 |
RZ Q1 π |
H |
H=2
1[111−1] |
H Q1 |
RZ Q1π Y2P Q1; Y2M Q1 RZ Q1 π |
RX |
RX(θ)=e−iθ/2σx=[cosθ−isinθ−isinθcosθ] |
RXQ1θ |
∣θ∣<π/2:XYARB Q1 0 θ; θ=π/2:X2P Q1; θ=−π/2:X2M Q1; π>∣θ∣>π/2:Y2M Q1;RZ Q1 θ;Y2P Q1; θ=π X2P Q1 X2P Q1 |
RY |
RY(θ)=e−iθ/2σy=[cosθsinθ−sinθcosθ] |
RYQ1θ |
∣θ∣ < π/2:XYARBQ1(π/2)θ; θ=π/2:Y2P Q1; θ=−π/2:Y2M Q1; π>∣θ∣>π/2:X2P Q1;RZ Q1 θ;X2M Q1; θ=π Y2P Q1 Y2P Q1 |
RXY |
RXY(ϕ,θ) = e−iθ/2n^⋅σ^ =[cosθ/2−ieiϕsinθ/2−ie−iϕsinθ/2cosθ/2] n^=(cosϕ,sinϕ,0) |
RXYQ1ϕθ |
∣θ∣ ⩽ π/2:XYARBQ1ϕθ; ∣θ∣>π /2:RZQ1π/2−ϕ;X2PQ1;RZQ1θ;X2MQ1;RZQ1ϕ−π/2 |
B |
对齐量子操作 |
B Q1 Q2 |
B Q1 Q2 R1 R2 |
注:
- B的编译需要补齐相关量子比特的读取腔,如B指令包含读取腔,不额外添加。
<div class="hljs-center">
<p><img src="https://quantumcomputer.oss-cn-hangzhou.aliyuncs.com/wiki/2021-12-03/e3413611602141e5a3e32bf817c7b3f3.png" alt="实验界面.png" /></p>
</div>
<p>QCIS是用于量子计算物理系统远程调控的<strong>指令集</strong>,这意味着云平台将支持用户远程调用其开放接口,<strong>在真实量子计算原型机上进行“云端”量子编程实验。</strong></p>
<h3><a id="QCIS_7"></a>QCIS指令概述</h3>
<p>QCIS(Quantum Control Instruction Set)是一套对超导量子计算机硬件系统进行控制的指 令集,旨在将硬件控制用指令进行抽象标准化。它不同于量子计算机指令集 QASM(Quantum Assembly Language),两者的区别在前者面向的是原始的物理系统而后者是对量子门的抽象 表达。QCIS和物理系统有比较紧密的的耦合,原则上QCIS和量子处理,控制系统是绑定的。 如果物理系统发生大的变化,比如qubit从Transmon Qubit换成Flux Qubit或Phase Qubit, 耦 合器从Gmon换成腔耦合等,QCIS也要有全新的版本才能适配。</p>
<h3><a id="QCIS_10"></a>QCIS指令格式</h3>
<p>QCIS指令采用《OpCode》《Target》的格式,由指令字符,目标比特组成。目前云平 台12量子计算机支持的指令包含14个单比特门和一个双比特门,分别为X, Y, Z, S, SD, H,T,T D, X2P, X2M, Y 2P, Y 2M 和CZ。具体定义我们会在下一单元给出。目标比特由字母Q加 相应索引(index)组成,如云平台12比特量子计算机上有12个量子比特,相应标识为Q1, Q2, . . .Q12. 每一个指令占一行。不同指令不可以叠加在同一行, 如X Y Q1指令是不合语法的。同样 同一门作用在不同比特上也应按照不同操作写在不同行。如X Q1 Q2 是不合语法的。但是, 有一个特例请读者注意,测量门可以写在同一行,如实验最终对第1, 4, 5比特做测量,可以表示为M Q1 Q4 Q5。也可以写在不同行做不同操作处理,如 M Q1 \n M Q4 \n M Q5。<br />
QCIS指令不区分大小写。</p>
<h3><a id="QCIS_14"></a>QCIS基础指令</h3>
<p>云平台所包含的原生门包含如下操作,X2P, X2M, Y2P, Y2M, RZ, XYARB, I, B,M. 除此之外,云平台也配备了复合门操作:X, Y, S, SD, T, TD, Z, H, RX,RY, RXY.</p>
<p>下表描述了云平台所包含的原生门的定义及使用规则</p>
<div class="hljs-center">
<p>表 1: QCIS原生门使用规则</p>
<table>
<thead>
<tr>
<th>指令</th>
<th>说 明</th>
<th>QCIS指令</th>
<th>验证规则</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2P</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mn>2</mn><mi>P</mi><mo>=</mo><msub><mi>R</mi><mi>x</mi></msub><mo>(</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mspace width="0.16667em"></mspace><msub><mi>σ</mi><mi>x</mi></msub></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">X2P=R_x(\pi/2)=e^{-i\pi/4 \, \sigma_x }\frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1&-i\\-i&1\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.13889em;">P</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span><span class="mord mtight"><span class="mspace thinspace mtight"></span><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.5510085em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist svg-align" style="height:0.912845em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mathrm mtight">2</span></span></span><span style="top:-2.872845em;"><span class="pstrut" style="height:3em;"></span><span class="mtight" style="height:1em;"><svg width='100%' height='1em'>
<svg viewBox='0 0 400000 1000' preserveAspectRatio='xMinYMin
slice'><path d='M95 622c-2.667 0-7.167-2.667-13.5
-8S72 604 72 600c0-2 .333-3.333 1-4 1.333-2.667 23.833-20.667 67.5-54s
65.833-50.333 66.5-51c1.333-1.333 3-2 5-2 4.667 0 8.667 3.333 12 10l173
378c.667 0 35.333-71 104-213s137.5-285 206.5-429S812 17.333 812 14c5.333
-9.333 12-14 20-14h399166v40H845.272L620 507 385 993c-2.667 4.667-9 7-19
7-6 0-10-1-12-3L160 575l-65 47zM834 0h399166v40H845z'/></svg></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.12715500000000002em;"></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5379999999999999em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mn>2</mn><mi>P</mi></mrow><annotation encoding="application/x-tex">X2P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.13889em;">P</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>无</td>
</tr>
<tr>
<td>X2M</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mn>2</mn><mi>M</mi><mo>=</mo><msub><mi>R</mi><mi>x</mi></msub><mo>(</mo><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mspace width="0.16667em"></mspace><msub><mi>σ</mi><mi>x</mi></msub></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>i</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>i</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">X2M=R_x(-\pi/2) = e^{i \pi/4 \,\sigma_x} = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1&i\\i&1\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.10903em;">M</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span><span class="mord mtight"><span class="mspace thinspace mtight"></span><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.5510085em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist svg-align" style="height:0.912845em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mathrm mtight">2</span></span></span><span style="top:-2.872845em;"><span class="pstrut" style="height:3em;"></span><span class="mtight" style="height:1em;"><svg width='100%' height='1em'>
<svg viewBox='0 0 400000 1000' preserveAspectRatio='xMinYMin
slice'><path d='M95 622c-2.667 0-7.167-2.667-13.5
-8S72 604 72 600c0-2 .333-3.333 1-4 1.333-2.667 23.833-20.667 67.5-54s
65.833-50.333 66.5-51c1.333-1.333 3-2 5-2 4.667 0 8.667 3.333 12 10l173
378c.667 0 35.333-71 104-213s137.5-285 206.5-429S812 17.333 812 14c5.333
-9.333 12-14 20-14h399166v40H845.272L620 507 385 993c-2.667 4.667-9 7-19
7-6 0-10-1-12-3L160 575l-65 47zM834 0h399166v40H845z'/></svg></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.12715500000000002em;"></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5379999999999999em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">i</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mn>2</mn><mi>M</mi></mrow><annotation encoding="application/x-tex">X2M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.10903em;">M</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>无</td>
</tr>
<tr>
<td>Y2P</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Y</mi><mn>2</mn><mi>P</mi><mo>=</mo><msub><mi>R</mi><mi>y</mi></msub><mo>(</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mspace width="0.16667em"></mspace><msub><mi>σ</mi><mi>y</mi></msub></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>1</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">Y2P= R_y(\pi/2) = e^{-i \pi/4\,\sigma_y} = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1&-1\\1&1\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.13889em;">P</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span><span class="mord mtight"><span class="mspace thinspace mtight"></span><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285716em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2818857142857143em;"></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.5510085em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist svg-align" style="height:0.912845em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mathrm mtight">2</span></span></span><span style="top:-2.872845em;"><span class="pstrut" style="height:3em;"></span><span class="mtight" style="height:1em;"><svg width='100%' height='1em'>
<svg viewBox='0 0 400000 1000' preserveAspectRatio='xMinYMin
slice'><path d='M95 622c-2.667 0-7.167-2.667-13.5
-8S72 604 72 600c0-2 .333-3.333 1-4 1.333-2.667 23.833-20.667 67.5-54s
65.833-50.333 66.5-51c1.333-1.333 3-2 5-2 4.667 0 8.667 3.333 12 10l173
378c.667 0 35.333-71 104-213s137.5-285 206.5-429S812 17.333 812 14c5.333
-9.333 12-14 20-14h399166v40H845.272L620 507 385 993c-2.667 4.667-9 7-19
7-6 0-10-1-12-3L160 575l-65 47zM834 0h399166v40H845z'/></svg></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.12715500000000002em;"></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5379999999999999em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Y</mi><mn>2</mn><mi>P</mi></mrow><annotation encoding="application/x-tex">Y2P</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.13889em;">P</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>无</td>
</tr>
<tr>
<td>Y2M</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Y</mi><mn>2</mn><mi>M</mi><mo>=</mo><msub><mi>R</mi><mi>y</mi></msub><mo>(</mo><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mspace width="0.16667em"></mspace><msub><mi>σ</mi><mi>y</mi></msub></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">Y2M=R_y(-\pi/2) = e^{i\pi/4\, \sigma_y } = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1&1\\-1&1\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.10903em;">M</span><span class="mrel">=</span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span><span class="mord mtight"><span class="mspace thinspace mtight"></span><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285716em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2818857142857143em;"></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.5510085em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist svg-align" style="height:0.912845em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mathrm mtight">2</span></span></span><span style="top:-2.872845em;"><span class="pstrut" style="height:3em;"></span><span class="mtight" style="height:1em;"><svg width='100%' height='1em'>
<svg viewBox='0 0 400000 1000' preserveAspectRatio='xMinYMin
slice'><path d='M95 622c-2.667 0-7.167-2.667-13.5
-8S72 604 72 600c0-2 .333-3.333 1-4 1.333-2.667 23.833-20.667 67.5-54s
65.833-50.333 66.5-51c1.333-1.333 3-2 5-2 4.667 0 8.667 3.333 12 10l173
378c.667 0 35.333-71 104-213s137.5-285 206.5-429S812 17.333 812 14c5.333
-9.333 12-14 20-14h399166v40H845.272L620 507 385 993c-2.667 4.667-9 7-19
7-6 0-10-1-12-3L160 575l-65 47zM834 0h399166v40H845z'/></svg></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.12715500000000002em;"></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5379999999999999em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Y</mi><mn>2</mn><mi>M</mi></mrow><annotation encoding="application/x-tex">Y2M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.10903em;">M</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>无</td>
</tr>
<tr>
<td>CZ</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>Z</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>1</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">CZ =\left[ \begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:2.6520099999999998em;"></span><span class="strut bottom" style="height:4.80204em;vertical-align:-2.15003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07153em;">C</span><span class="mord mathit" style="margin-right:0.07153em;">Z</span><span class="mrel">=</span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6520099999999998em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.80499em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.40599em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.65201em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"></span></span></span></span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6520099999999998em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.80499em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.40599em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.65201em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"></span></span></span></span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>C</mi><mi>Z</mi></mrow><annotation encoding="application/x-tex">CZ</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07153em;">C</span><span class="mord mathit" style="margin-right:0.07153em;">Z</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">Q2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">2</span></span></span></span></td>
<td>Q1,Q2 需满足硬件连接条件</td>
</tr>
<tr>
<td>RZ</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>Z</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn><msub><mi>σ</mi><mi>z</mi></msub></mrow></msup><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msup><mi>e</mi><mrow><mi>i</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">RZ(\theta) = e^{-i\theta/2 \sigma_z } = \left[\begin{array}{cc} e^{-i\theta/2}& 0 \\ 0 & e^{i\theta/2}\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.498em;"></span><span class="strut bottom" style="height:2.4960000000000004em;vertical-align:-0.9980000000000004em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07153em;">Z</span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">2</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.498em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">2</span></span></span></span></span></span></span></span></span></span></span><span style="top:-2.3619999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9980000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.498em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.3619999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">2</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9980000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td>RZ Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span></td>
<td>无</td>
</tr>
<tr>
<td>XYARB</td>
<td>XYARB<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><mi>ϕ</mi><mo separator="true">,</mo><mi>θ</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn><mover accent="true"><mrow><mi>n</mi></mrow><mo>^</mo></mover><mo>⋅</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mo>^</mo></mover></mrow></msup><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>ϕ</mi></mrow></msup><mi>sin</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi><msup><mi>e</mi><mrow><mi>i</mi><mi>ϕ</mi></mrow></msup><mi>sin</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">(\phi, \theta) = e^{-i \theta/2 \hat{n}\cdot \hat{\sigma}} =\left[\begin{array}{cc} \cos \theta/2 & -ie^{-i\phi}\sin\theta/2 \\-i e^{i\phi} \sin\theta/2 & \cos\theta/2\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.4591079999999998em;"></span><span class="strut bottom" style="height:2.418216em;vertical-align:-0.9591080000000003em;"></span><span class="base"><span class="mopen">(</span><span class="mord mathit">ϕ</span><span class="mpunct">,</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">2</span><span class="mord accent mtight"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="margin-left:0em;"><span><span class="mtight">^</span></span></span></span></span></span></span></span><span class="mbin mtight">⋅</span><span class="mord accent mtight"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span></span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="margin-left:0em;"><span><span class="mtight">^</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4591079999999998em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span><span style="top:-2.4008919999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight">ϕ</span></span></span></span></span></span></span></span></span><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9591080000000003em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4591079999999998em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight">ϕ</span></span></span></span></span></span></span></span></span><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span><span style="top:-2.4008919999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9591080000000003em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mrow><mi>n</mi></mrow><mo>^</mo></mover><mo>=</mo><mo>(</mo><mi>cos</mi><mi>ϕ</mi><mo separator="true">,</mo><mi>sin</mi><mi>ϕ</mi><mo separator="true">,</mo><mn>0</mn><mo>)</mo></mrow><annotation encoding="application/x-tex">\hat{n} = (\cos\phi, \sin\phi, 0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="margin-left:0em;"><span>^</span></span></span></span></span></span></span><span class="mrel">=</span><span class="mopen">(</span><span class="mop">cos</span><span class="mord mathit">ϕ</span><span class="mpunct">,</span><span class="mop">sin</span><span class="mord mathit">ϕ</span><span class="mpunct">,</span><span class="mord mathrm">0</span><span class="mclose">)</span></span></span></span></td>
<td>XYARB Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">ϕ</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>≤</mo><mi>θ</mi><mo>≤</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">-\pi/2 \le \theta \le \pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mrel">≤</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">≤</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span></td>
</tr>
<tr>
<td>I</td>
<td>在一段时间t(ns)内无操作</td>
<td>I Q1 t</td>
<td>t为整数,单位为0.5ns <br> 即当t=1时,时间为0.5ns</td>
</tr>
<tr>
<td>B</td>
<td>对齐量子操作</td>
<td>B Q1 Q2</td>
<td>无</td>
</tr>
</tbody>
</table>
</div>
<p>注:</p>
<ul>
<li>
<p>RZ 指令中的<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span> 不做<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>−</mo><mi>π</mi><mo><</mo><mi>θ</mi><mo>≤</mo><mi>π</mi></mrow><annotation encoding="application/x-tex">-\pi<\theta\le \pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.83041em;vertical-align:-0.13597em;"></span><span class="base"><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mrel"><</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">≤</span><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span>的约束</p>
</li>
<li>
<p>RXY 指令中的<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">ϕ</span></span></span></span> 不做<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>−</mo><mi>π</mi><mo><</mo><mi>θ</mi><mo>≤</mo><mi>π</mi></mrow><annotation encoding="application/x-tex">-\pi<\theta\le \pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.83041em;vertical-align:-0.13597em;"></span><span class="base"><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mrel"><</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">≤</span><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span>的约束</p>
</li>
<li>
<p>目前暂不支持直接调用XYARB指令,建议使用RXY指令代替(详见RXY编译规则)。</p>
</li>
</ul>
<p>本表描述了复合门的编译规则。</p>
<div class="hljs-center">
<p>表 2: QCIS 指令编译规则</p>
<table>
<thead>
<tr>
<th>指令</th>
<th>说 明</th>
<th>QCIS指令</th>
<th>编译规则</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">X =\left[\begin{array}{cc} 0&1\\1&0\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>X2P Q1 <br> X2P Q1</td>
</tr>
<tr>
<td>Y</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Y</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>i</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">Y =\left[\begin{array}{cc} 0&-i\\i&0\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.22222em;">Y</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>Y2P Q1 <br> X2P Q1</td>
</tr>
<tr>
<td>S</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>S</mi><mo>=</mo><msup><mi>e</mi><mrow><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><msub><mi>R</mi><mi>z</mi></msub><mo>(</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>)</mo><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>i</mi></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">S = e^{i\pi/4}R_z(\pi/2)= \left[\begin{array}{cc} 1&0\\0&i\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.05764em;">S</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mclose">)</span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.05764em;">S</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>RZ Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span>/2</td>
</tr>
<tr>
<td>SD</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>S</mi><mi>D</mi><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><msub><mi>R</mi><mi>z</mi></msub><mo>(</mo><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>)</mo><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">SD = e^{-i\pi/4}R_z(-\pi/2)= \left[\begin{array}{cc} 1&0\\0&-i\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.05764em;">S</span><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mclose">)</span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>S</mi><mi>D</mi></mrow><annotation encoding="application/x-tex">SD</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.05764em;">S</span><span class="mord mathit" style="margin-right:0.02778em;">D</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>RZ Q1 -<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span>/2</td>
</tr>
<tr>
<td>T</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>T</mi><mo>=</mo><msup><mi>e</mi><mrow><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>8</mn></mrow></msup><msub><mi>R</mi><mi>z</mi></msub><mo>(</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>)</mo><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msup><mi>e</mi><mrow><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">T = e^{i\pi/8}R_z(\pi/4)= \left[\begin{array}{cc} 1&0\\0&e^{i\pi/4}\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.474em;"></span><span class="strut bottom" style="height:2.4480000000000004em;vertical-align:-0.9740000000000004em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.13889em;">T</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">8</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">4</span><span class="mclose">)</span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.474em;"><span style="top:-3.634em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.3859999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9740000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.474em;"><span style="top:-3.634em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.3859999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9740000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.13889em;">T</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>RZ Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span>/4</td>
</tr>
<tr>
<td>TD</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>T</mi><mi>D</mi><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>8</mn></mrow></msup><msub><mi>R</mi><mi>z</mi></msub><mo>(</mo><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn><mo>)</mo><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>π</mi><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">TD = e^{-i\pi/8}R_z(-\pi/4)= \left[\begin{array}{cc} 1&0\\0&e^{-i\pi/4}\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.474em;"></span><span class="strut bottom" style="height:2.4480000000000004em;vertical-align:-0.9740000000000004em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.13889em;">T</span><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">8</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">4</span><span class="mclose">)</span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.474em;"><span style="top:-3.634em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.3859999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9740000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.474em;"><span style="top:-3.634em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.3859999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.03588em;">π</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">4</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9740000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.13889em;">T</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>RZ Q1 -<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span>/4</td>
</tr>
<tr>
<td>Z</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Z</mi><mo>=</mo><mi>i</mi><msub><mi>R</mi><mi>z</mi></msub><mo>(</mo><mi>p</mi><mi>i</mi><mo>)</mo><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>1</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">Z = iR_z(pi)= \left[\begin{array}{cc} 1&0\\0&-1\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07153em;">Z</span><span class="mrel">=</span><span class="mord mathit">i</span><span class="mord"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.00773em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"></span></span></span></span></span><span class="mopen">(</span><span class="mord mathit">p</span><span class="mord mathit">i</span><span class="mclose">)</span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Z</mi></mrow><annotation encoding="application/x-tex">Z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07153em;">Z</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>RZ Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span></td>
</tr>
<tr>
<td>H</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>H</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></mfrac><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>1</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">H = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1&1\\1&-1\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.08125em;">H</span><span class="mrel">=</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.5510085em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord sqrt mtight"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist svg-align" style="height:0.912845em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mtight" style="padding-left:0.833em;"><span class="mord mathrm mtight">2</span></span></span><span style="top:-2.872845em;"><span class="pstrut" style="height:3em;"></span><span class="mtight" style="height:1em;"><svg width='100%' height='1em'>
<svg viewBox='0 0 400000 1000' preserveAspectRatio='xMinYMin
slice'><path d='M95 622c-2.667 0-7.167-2.667-13.5
-8S72 604 72 600c0-2 .333-3.333 1-4 1.333-2.667 23.833-20.667 67.5-54s
65.833-50.333 66.5-51c1.333-1.333 3-2 5-2 4.667 0 8.667 3.333 12 10l173
378c.667 0 35.333-71 104-213s137.5-285 206.5-429S812 17.333 812 14c5.333
-9.333 12-14 20-14h399166v40H845.272L620 507 385 993c-2.667 4.667-9 7-19
7-6 0-10-1-12-3L160 575l-65 47zM834 0h399166v40H845z'/></svg></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.12715500000000002em;"></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathrm mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.5379999999999999em;"></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathrm">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathrm">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>H</mi></mrow><annotation encoding="application/x-tex">H</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.68333em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.08125em;">H</span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span></td>
<td>RZ Q1<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span> <br> Y2P Q1; <br> Y2M Q1 <br> RZ Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span></td>
</tr>
<tr>
<td>RX</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>X</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn><msub><mi>σ</mi><mi>x</mi></msub></mrow></msup><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi><mi>sin</mi><mi>θ</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi><mi>sin</mi><mi>θ</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">RX(\theta) = e^{-i\theta/2 \sigma_x } = \left[\begin{array}{cc} \cos\theta & -i\sin \theta \\ -i\sin\theta & \cos \theta \end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">2</span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285719em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>X</mi><mi>Q</mi><mn>1</mn><mi>θ</mi></mrow><annotation encoding="application/x-tex">RX Q1 \theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∣</mo><mi>θ</mi><mo>∣</mo><mo><</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\mid\theta\mid < \pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mrel">∣</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">∣</span><span class="mrel"><</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span>:XYARB Q1 0 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span>; <br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\theta = \pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">=</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span>:X2P Q1; <br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi><mo>=</mo><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\theta = -\pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">=</span><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span>:X2M Q1;<br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi><mo>></mo><mo>∣</mo><mi>θ</mi><mo>∣</mo><mo>></mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\pi>\mid\theta\mid>\pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mrel">></span><span class="mrel">∣</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">∣</span><span class="mrel">></span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span>:Y2M Q1;RZ Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span>;Y2P Q1; <br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi><mo>=</mo><mi>π</mi></mrow><annotation encoding="application/x-tex">\theta = \pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">=</span><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span> X2P Q1 <br> X2P Q1</td>
</tr>
<tr>
<td>RY</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>Y</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn><mspace width="0.16667em"></mspace><msub><mi>σ</mi><mi>y</mi></msub></mrow></msup><mo>=</mo><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>sin</mi><mi>θ</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>sin</mi><mi>θ</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">RY(\theta) = e^{-i\theta/2\, \sigma_y } = \left[\begin{array}{cc} \cos\theta & -\sin \theta \\ \sin\theta & \cos \theta \end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.45em;"></span><span class="strut bottom" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mclose">)</span><span class="mrel">=</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">2</span><span class="mord mtight"><span class="mspace thinspace mtight"></span><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.16454285714285716em;"><span style="top:-2.357em;margin-left:-0.03588em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2818857142857143em;"></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="mrel">=</span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>Y</mi><mi>Q</mi><mn>1</mn><mi>θ</mi></mrow><annotation encoding="application/x-tex">RY Q1 \theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∣</mo><mi>θ</mi><mo>∣</mo></mrow><annotation encoding="application/x-tex">\mid\theta\mid</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mrel">∣</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">∣</span></span></span></span> < <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>:</mo><mi>X</mi><mi>Y</mi><mi>A</mi><mi>R</mi><mi>B</mi><mi>Q</mi><mn>1</mn><mo>(</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>)</mo><mi>θ</mi></mrow><annotation encoding="application/x-tex">\pi/2: XYARB Q1 (\pi/2) \theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mrel">:</span><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathit">A</span><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mclose">)</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span>; <br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi><mo>=</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\theta = \pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">=</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span>:Y2P Q1; <br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi><mo>=</mo><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\theta = -\pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">=</span><span class="mord">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span>:Y2M Q1;<br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi><mo>></mo><mo>∣</mo><mi>θ</mi><mo>∣</mo><mo>></mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">\pi>\mid\theta\mid>\pi/2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mrel">></span><span class="mrel">∣</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">∣</span><span class="mrel">></span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span>:X2P Q1;RZ Q1 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span>;X2M Q1; <br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>θ</mi><mo>=</mo><mi>π</mi></mrow><annotation encoding="application/x-tex">\theta = \pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.69444em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">=</span><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span> Y2P Q1 <br> Y2P Q1</td>
</tr>
<tr>
<td>RXY</td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>X</mi><mi>Y</mi><mo>(</mo><mi>ϕ</mi><mo separator="true">,</mo><mi>θ</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">RXY(\phi, \theta)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mopen">(</span><span class="mord mathit">ϕ</span><span class="mpunct">,</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mclose">)</span></span></span></span> = <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn><mover accent="true"><mrow><mi>n</mi></mrow><mo>^</mo></mover><mo>⋅</mo><mover accent="true"><mrow><mi>σ</mi></mrow><mo>^</mo></mover></mrow></msup></mrow><annotation encoding="application/x-tex">e^{-i \theta/2 \hat{n}\cdot \hat{\sigma}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.8879999999999999em;"></span><span class="strut bottom" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="base"><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">θ</span><span class="mord mathrm mtight">/</span><span class="mord mathrm mtight">2</span><span class="mord accent mtight"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="margin-left:0em;"><span><span class="mtight">^</span></span></span></span></span></span></span></span><span class="mbin mtight">⋅</span><span class="mord accent mtight"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.03588em;">σ</span></span></span><span style="top:-2.7em;"><span class="pstrut" style="height:2.7em;"></span><span class="accent-body" style="margin-left:0em;"><span><span class="mtight">^</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span> =<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mrow><mo fence="true">[</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mi>ϕ</mi></mrow></msup><mi>sin</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mi>i</mi><msup><mi>e</mi><mrow><mi>i</mi><mi>ϕ</mi></mrow></msup><mi>sin</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mi>cos</mi><mi>θ</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">\left[\begin{array}{cc} \cos \theta/2 & -ie^{-i\phi}\sin\theta/2 \\-i e^{i\phi} \sin\theta/2 & \cos\theta/2\end{array}\right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:1.4591079999999998em;"></span><span class="strut bottom" style="height:2.418216em;vertical-align:-0.9591080000000003em;"></span><span class="base"><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4591079999999998em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span><span style="top:-2.4008919999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mord mathit mtight">ϕ</span></span></span></span></span></span></span></span></span><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9591080000000003em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4591079999999998em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord mathit">i</span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight">ϕ</span></span></span></span></span></span></span></span></span><span class="mop">sin</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span><span style="top:-2.4008919999999994em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop">cos</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9591080000000003em;"></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mover accent="true"><mrow><mi>n</mi></mrow><mo>^</mo></mover><mo>=</mo><mo>(</mo><mi>cos</mi><mi>ϕ</mi><mo separator="true">,</mo><mi>sin</mi><mi>ϕ</mi><mo separator="true">,</mo><mn>0</mn><mo>)</mo></mrow><annotation encoding="application/x-tex">\hat{n} = (\cos\phi, \sin\phi, 0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="margin-left:0em;"><span>^</span></span></span></span></span></span></span><span class="mrel">=</span><span class="mopen">(</span><span class="mop">cos</span><span class="mord mathit">ϕ</span><span class="mpunct">,</span><span class="mop">sin</span><span class="mord mathit">ϕ</span><span class="mpunct">,</span><span class="mord mathrm">0</span><span class="mclose">)</span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>X</mi><mi>Y</mi><mi>Q</mi><mn>1</mn><mi>ϕ</mi><mi>θ</mi></mrow><annotation encoding="application/x-tex">RXY Q1 \phi \theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mord mathit">ϕ</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span></td>
<td><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∣</mo><mi>θ</mi><mo>∣</mo></mrow><annotation encoding="application/x-tex">\mid\theta\mid</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mrel">∣</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">∣</span></span></span></span> ⩽ <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>:</mo><mi>X</mi><mi>Y</mi><mi>A</mi><mi>R</mi><mi>B</mi><mi>Q</mi><mn>1</mn><mi>ϕ</mi><mi>θ</mi></mrow><annotation encoding="application/x-tex">\pi/2: XYARB Q1 \phi \theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mrel">:</span><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="mord mathit">A</span><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mord mathit">ϕ</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span>; <br> <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>∣</mo><mi>θ</mi><mo>∣</mo></mrow><annotation encoding="application/x-tex">\mid\theta\mid</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mrel">∣</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span><span class="mrel">∣</span></span></span></span>><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.43056em;"></span><span class="strut bottom" style="height:0.43056em;vertical-align:0em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span> /2:<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>Z</mi><mi>Q</mi><mn>1</mn><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn><mo>−</mo><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">RZ Q1 \pi /2-\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07153em;">Z</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span><span class="mbin">−</span><span class="mord mathit">ϕ</span></span></span></span>;<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mn>2</mn><mi>P</mi><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">X2P Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.13889em;">P</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span>;<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>Z</mi><mi>Q</mi><mn>1</mn><mi>θ</mi></mrow><annotation encoding="application/x-tex">RZ Q1 \theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.69444em;"></span><span class="strut bottom" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07153em;">Z</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mord mathit" style="margin-right:0.02778em;">θ</span></span></span></span>;<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>X</mi><mn>2</mn><mi>M</mi><mi>Q</mi><mn>1</mn></mrow><annotation encoding="application/x-tex">X2M Q1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.68333em;"></span><span class="strut bottom" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="mord mathrm">2</span><span class="mord mathit" style="margin-right:0.10903em;">M</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span></span></span></span>;<span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>R</mi><mi>Z</mi><mi>Q</mi><mn>1</mn><mi>ϕ</mi><mo>−</mo><mi>π</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow><annotation encoding="application/x-tex">RZ Q1 \phi-\pi /2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span class="base"><span class="mord mathit" style="margin-right:0.00773em;">R</span><span class="mord mathit" style="margin-right:0.07153em;">Z</span><span class="mord mathit">Q</span><span class="mord mathrm">1</span><span class="mord mathit">ϕ</span><span class="mbin">−</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mord mathrm">/</span><span class="mord mathrm">2</span></span></span></span></td>
</tr>
<tr>
<td>B</td>
<td>对齐量子操作</td>
<td>B Q1 Q2</td>
<td>B Q1 Q2 R1 R2</td>
</tr>
</tbody>
</table>
</div>
<p>注:</p>
<ul>
<li>B的编译需要补齐相关量子比特的读取腔,如B指令包含读取腔,不额外添加。</li>
</ul>
发表感想(评论支持markdown)